Ans: Hadoop, well known as Apache Hadoop, is an open-source software platform for scalable and distributed computing of large volumes of data. It provides rapid, high performance and cost-effective analysis of structured and unstructured data generated on digital platforms and within the enterprise. It is used in almost all departments and sectors today.Some of the instances where Hadoop is used:
Ans:
Criteria | Hadoop | Spark |
Dedicated storage | HDFS | None |
Speed of processing | average | excellent |
Libraries | Separate tools available | Spark Core, SQL, Streaming, MLlib, GraphX |
Ans: Hadoop is a distributed file system, which lets you store and handle massive amount of data on a cloud of machines, handling data redundancy. The primary benefit is that since data is stored in several nodes, it is better to process it in distributed manner. Each node can process the data stored on it instead of spending time in moving it over the network.
On the contrary, in Relational database computing system, you can query data in real-time, but it is not efficient to store data in tables, records and columns when the data is huge.
Hadoop also provides a scheme to build a Column Database with Hadoop HBase, for runtime queries on rows.
Ans: Hadoop can run in three modes:
Ans: In simple terms, block is the physical representation of data while split is the logical representation of data present in the block. Split acts a s an intermediary between block and mapper.
Suppose we have two blocks:
Block 1: myTectra
Block 2: my Tect
Now, considering the map, it will read first block from my till ll, but does not know how to process the second block at the same time. Here comes Split into play, which will form a logical group of Block1 and Block 2 as a single block.
It then forms key-value pair using inputformat and records reader and sends map for further processing With inputsplit, if you have limited resources, you can increase the split size to limit the number of maps. For instance, if there are 10 blocks of 640MB (64MB each) and there are limited resources, you can assign ‘split size’ as 128MB. This will form a logical group of 128MB, with only 5 maps executing at a time.
However, if the ‘split size’ property is set to false, whole file will form one inputsplit and is processed by single map, consuming more time when the file is bigger.
Ans: Distributed Cache, in Hadoop, is a service by MapReduce framework to cache files when needed. Once a file is cached for a specific job, hadoop will make it available on each data node both in system and in memory, where map and reduce tasks are executing.Later, you can easily access and read the cache file and populate any collection (like array, hashmap) in your code.
Benefits of using distributed cache are:
Ans:
There are three most common input formats in Hadoop:
Ans: DataNode stores data in HDFS; it is a node where actual data resides in the file system. Each datanode sends a heartbeat message to notify that it is alive. If the namenode does noit receive a message from datanode for 10 minutes, it considers it to be dead or out of place, and starts replication of blocks that were hosted on that data node such that they are hosted on some other data node.A BlockReport contains list of all blocks on a DataNode. Now, the system starts to replicate what were stored in dead DataNode.
The NameNode manages the replication of data blocksfrom one DataNode to other. In this process, the replication data transfers directly between DataNode such that the data never passes the NameNode.
Ans: The three core methods of a Reducer are: setup(): this method is used for configuring various parameters like input data size, distributed cache. public void setup (context) reduce(): heart of the reducer always called once per key with the associated reduced task public void reduce(Key, Value, context) cleanup(): this method is called to clean temporary files, only once at the end of the task public void cleanup (context)
Ans: Extensively used in MapReduce I/O formats, SequenceFile is a flat file containing binary key/value pairs. The map outputs are stored as SequenceFile internally. It provides Reader, Writer and Sorter classes. The three SequenceFile formats are: Uncompressed key/value records. Record compressed key/value records – only ‘values’ are compressed here. Block compressed key/value records – both keys and values are collected in ‘blocks’ separately and compressed. The size of the ‘block’ is configurable.
Ans: Job Tracker’s primary function is resource management (managing the task trackers), tracking resource availability and task life cycle management (tracking the taks progress and fault tolerance). It is a process that runs on a separate node, not on a DataNode often. Job Tracker communicates with the NameNode to identify data location. Finds the best Task Tracker Nodes to execute tasks on given nodes. Monitors individual Task Trackers and submits the overall job back to the client. It tracks the execution of MapReduce workloads local to the slave node.
Ans: Since Hadoop splits data into various blocks, RecordReader is used to read the slit data into single record. For instance, if our input data is split like: Row1: Welcome to Row2: Intellipaat It will be read as “Welcome to Intellipaat” using RecordReader.
Ans: One limitation of Hadoop is that by distributing the tasks on several nodes, there are chances that few slow nodes limit the rest of the program. Tehre are various reasons for the tasks to be slow, which are sometimes not easy to detect. Instead of identifying and fixing the slow-running tasks, Hadoop tries to detect when the task runs slower than expected and then launches other equivalent task as backup. This backup mechanism in Hadoop is Speculative Execution. It creates a duplicate task on another disk. The same input can be processed multiple times in parallel. When most tasks in a job comes to completion, the speculative execution mechanism schedules duplicate copies of remaining tasks (which are slower) across the nodes that are free currently. When these tasks finish, it is intimated to the JobTracker. If other copies are executing speculatively, Hadoop notifies the TaskTrackers to quit those tasks and reject their output. Speculative execution is by default true in Hadoop. To disable, set mapred.map.tasks.speculative.execution and mapred.reduce.tasks.speculative.execution JobConf options to false.
Ans: It will throw an exception saying that the output file directory already exists.
To run the MapReduce job, you need to ensure that the output directory does not exist before in the HDFS.
To delete the directory before running the job, you can use shell:Hadoop fs –rmr /path/to/your/output/Or via the Java API: FileSystem.getlocal(conf).delete(outputDir, true);
Ans: First, check the list of MapReduce jobs currently running. Next, we need to see that there are no orphaned jobs running; if yes, you need to determine the location of RM logs.
Ans: hdfs-site.xml is used to configure HDFS. Changing the dfs.replication property in hdfs-site.xml will change the default replication for all files placed in HDFS.
You can also modify the replication factor on a per-file basis using the
you can also change the replication factor of all the files under a directory.
Go through Hadoop Training to learn about Replication Factor In HDFS now!
Ans: To achieve this compression, you should set:
Ans: Map side Join at map side is performed data reaches the map. You need a strict structure for defining map side join. On the other hand, Reduce side Join (Repartitioned Join) is simpler than map side join since the input datasets need not be structured. However, it is less efficient as it will have to go through sort and shuffle phases, coming with network overheads.
Ans: By writing the query:
You can write your query for the data you want to import from Hive to HDFS. The output you receive will be stored in part files in the specified HDFS path.
Ans: Yahoo! (the biggest contributor to the creation of Hadoop) – Yahoo search engine uses Hadoop, Facebook – Developed Hive for analysis,Amazon,Netflix,Adobe,eBay,Spotify,Twitter,Adobe.
Ans: It splits input files into chunks and assign each split to a mapper for processing.
Ans: Hadoop core components include:
Ans: NameNode in Hadoop is where Hadoop stores all the file location information in HDFS. It is the master node on which job tracker runs and consists of metadata.
Ans: Data components used by Hadoop are:
Related Interview Questions.